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Abstract

Name matching is a key component of systems for entity resolution or record
linkage. Alternative spellings of the same names are a common occurrence in
many applications. We use the largest collection of genealogy person records in
the world together with user search query logs to build name matching models.
The procedure for building a crowd-sourced training set is outlined together
with the presentation of our method. We cast the problem of learning alterna-
tive spellings as a machine translation problem at the character level. We use
information retrieval evaluation methodology to show that this method sub-
stantially outperforms on our data a number of standard well known phonetic
and string similarity methods in terms of precision and recall. Additionally,
we rigorously compare the performance of standard methods when compared
with each other. Our result can lead to a significant practical impact in entity
resolution applications.



1.1 Introduction

A person’s name, especially the family name, is the key field used in identi-
fying person’s records in databases. Software tools and applications designed
for entity resolution of a person’s records usually rely on the person’s name
as a primary identification field. In particular, genealogy services provide user
access to a person’s record databases and facilitate search for a user’s ances-
tors/relatives and other person/records of interest. A persons’s records indicate
some type of a life event including birth, death, marriage or relocation. Typ-
ically, records are indexed by some unique identifier and can also be searched
by a combination of last/first names, geographical locations and event dates.
Searching a record database is complicated by the user not knowing the exact
spelling of the name in the record they are searching for. This task becomes
even harder since databases often contain alternate spellings referring to the
same person. This transpires due to many factors including optical character
recognition errors when scanning the records, errors/misspelling of names in
the records themselves, and name transliterations. For instance a common last
name “Shepard” has been also commonly spelled as “Shepherd”, “Sheppard”,
“Shephard”, “Shepperd”, “Sheperd”. Clearly, having methods that would pro-
vide users and the search engines with a list of highly credible misspelling of the
query name would significantly improve the search results.

Knowing how to misspell names to find records of interest has always been
a part of a professional genealogist’s domain expertise. In this paper we try to
bridge this gap and bring this power to the average user by employing data-
driven methods that rely on our unique data set. Through Ancestry.com we
have access to the world’s largest genealogy data repository. The main func-
tion of a genealogy service is to facilitate discovery of relevant person’s records
and the construction of family trees. Tree construction involves user attaching
relevant scanned/digitized records, found in Ancestry.com databases, to user-
generated tree node. Having records attached to individual tree nodes affords
us an opportunity to collect misspellings of names. By leveraging user-provided
links between individual user family tree nodes and scanned attached records,
we generated a ”labeled” dataset of name pairs where the left side of each pair
comes from user supplied person names and the right part of the pair comes
from the attached record name field. All user-identifying information except for
last name pairs is discarded from the final dataset. We filter and pre-process
this list of name pairs and use it to train a model using standard machine
translation methods. We will go into more details on data pre-processing in
Section 5. Additionally, we generated another dataset from company search
logs. Often, users modify a previous search query in hope of getting better
results. These user-driven modifications are called query reformulations. By
identifying logged-in user sessions and extracting names from user queries in
sequential order from the same session in a specified time interval and using
our assumption that users frequently search for variations of the same name we
have been able to accumulate a large number of name pairs that could also be
used as a training/testing data for our models.



As a result of our experiments we produce ranked candidate variant spellings
for each query name. In addition to providing the translation model we also
propose a methodology, adapted from the information retrieval community, for
evaluating of the final candidate list and for comparing it with other methods.

In the results section we will show that our methods perform significantly
better than other state-of-the-art methods in terms of precision and recall in
identifying a quality lists of alternative name spellings.

The remainder of the paper is organized as following. In section 2 we dis-
cuss the numerous previous works in related fields. A detailed description of
our training data is given in Section 3. In Section 4 we outline the machine
translation method used in training our model. We then discuss our results and
present comparisons with other methods in Section 5 and conclude in Section
6.

1.2 Previous work

The classic reference in the field of record linkage is a paper by Fellegi and
Sunter [14] published in 1969. In their work the authors have carefully presented
the theory of record matching. They defined the terms of positive disposition
(link and non-link) and negative disposition (possible link) and showed that the
optimal record matching linkage rule would minimize the possibility of failing
to make a positive disposition for fixed levels of errors. Since this seminal work
there has been proliferation of work in this area. In the interest of brevity we
direct the reader to the outstanding 2006 survey paper by Winkler [30] and to
the comprehensive work by Christen [10] published just recently.

With the explosive growth of data coming from web applications it is be-
coming imperative to discover the best methods for record matching in terms
of accuracy and speed. Historically, methods focusing on name matching could
be separated into two classes: sequential character methods and bag-of-words
methods [21].

1.2.1 Sequential Character methods

Phonetic similarity methods are an important category of sequential character
methods. The key concept of phonetic methods is to map n-grams of characters
into phonetic equivalents. The output of using these methods on string pairs
is a binary decision and not a degree of similarity. The best-known method
from this class is Soundex [26]. Over the years a numerous improvements of
this approach have been made. In particular some of them had to do with
accommodating non-English names. Popular methods include Soundex [26],
Double Metaphon [24], and NYSIIS [28]. While these methods proved to be
useful in improving performance in data matching applications they do not
solve the problem of relevance ranking of alternative spellings, which is of great
importance for search engines when considering using alternative name spellings
for query expansion.



Another important category of sequential character methods often used in
conjunction with phonetic methods is the class of static string similarity mea-
sures. Similarity method based on edit distance (the Levenshtein distance, as
it is also known [18]) is the most well-known method of this type. The edit
distance between strings s and t is the cost of the optimal shortest sequence of
edit operations (substitute, add, delete) that converts s to ¢t. For instance, the
mapping of s = ”Johnson” to t = ”Johnston” results in one addition of letter
”t” and hence, results in a distance of one. Other common similarity measures
include the Jaro [16] method which takes into account the number and order
of common characters between two strings and the Jaro-Winkler [29] method
which extends Jaro by accounting for the common prefixes in both strings [3],
[10]. The static similarity measures described above, while useful in measuring
similarity and ranking alternative spellings, are not capable of generating alter-
native spellings. This capability is typically absent from all methods that do
not take a dataset’s statistical information into account.

In 2013 Bradford [5] published a paper dealing with alternative name spelling
generation. He used latent semantic indexing that uses Singular Value Decom-
position (SVD) method to identify patterns in the relationships between the
terms in unstructured collection of texts.

Because of the difficulty associated with obtaining the experimental data
many researchers build their own synthetic datasets by utilizing specialized tools
for mining the web and extracting words that appear to be last names. The
resulting names are used in forming artificial pairs using one or more similarity
measures (typically based on edit distance). Another popular alternative is to
hire human annotators who create last name pairs based on their knowledge of
name misspelling. Both of these methods may introduce bias.

Our data is being produced by millions of users who act as human annota-
tors and who should be experts in their own genealogy and are motivated to
build quality content. Due to the nature of our dataset we can extract best
pairs using frequency statistics. We will go into more detail about our filtering
process later in this paper. Having frequency information allows us to assemble
realistic distribution of name pairs and helps in training more accurate models
of alternative name spellings.

1.2.2 Bag-of-words methods

Bag-of-words methods typically represent strings as a set of words or word n-
grams. There were numerous studies published on the topic of applying bags
of words to record linkage over the last decade [21]. Cosine similarity of term
frequency inverse document frequency (TFIDF) weighted vectors is one of the
most popular methods of this type. Typical vectors consist of individual words
or n-grams. The main shortcoming of cosine similarity TFIDF is that this
method requires exact matches between fields. To alleviate this issue cosine
similarity Soft TFIDF was introduced by Cohen et. al. [11]. In addition to
counting identical fields occurring in both vectors Soft TFIDF compares and
keeps track of ”similar” fields in both vectors. Bilenko et. al. [3] showed



how machine learning methods could be successfully employed for learning the
combined field similarity. They trained an SVM classifier using feature vectors,
and then applied the learned classifier’s confidence in the match as a class score.
In this paper we do not consider these approaches because we primarily work
with single word last names and bag-of-words methods are more suited for
finding similarity between multi-field records.

1.2.3 Machine Translation literature

In the last several decades machine translation methods have gained significant
traction and recently found their way into the problem of name matching. In
2007 Bhagat et. al. [2] implemented a transducer based method for finding
alternative name spellings by employing a graphemes-to-phonemes framework.
Their method involved running EM (expectation maximization) algorithm, first
presented by Dempster [12], to align text from the CMU dictionary with their
phoneme sequence equivalents. Next, they built a character language model of
phoneme trigrams using the same CMU dictionary phonemes. Their training
set was mined from the web. Using both-ways translation models and language
models, the authors were able to generate alternative phoneme sequences (pro-
nunciations), given a character string name, and then each of these sequences
was converted into an alternative character sequence [23].

In 1996 Ristad and Yianilos [25] presented an interesting solution where they
learned the cost of edit distance operations, which are normally all set to one
in static edit distance algorithms. The authors used expectation maximization
algorithm for training. Their model resulted in the form a transducer. Bilenko
et. al. [4] improved on Ristad and Yianilos’s learned edit distance model by
including affine gaps. They also presented a learned string similarity measure
based on unordered bags of words, using SVM for training. McCallum et. al.
[20] in 2005 approached the same problem from the different angle. Instead of
using generative models like [25] and [4] they have used discriminative method,
conditional random fields (CRF), where they have been able to use both positive
and negative string pairs for training.

1.3 Datasets

Ancestry.com has over the years accumulated over 13 billion records and 60 mil-
lion personal family trees [1]. Most of the records in the Ancestry.com database
originate from the Western European countries, United States, Canada, Aus-
tralia, and New Zealand. Scanned collections of census data, and personal
public and private documents uploaded by company users comprise the bulk of
Ancestry.com datasets. One of the key features of the Ancestry.com web site
is the facility for building personal family trees with an option for searching
and attaching relevant documents from record databases to the relevant parts
of family trees. For example if a family tree contains a node for a person with
the name John Smith it would be often accompanied by the birth record, relo-



cation record, marriage record and other records discovered by the owner of the
family tree. Since most of the nodes in the deep family trees involve persons
who are no longer living, death records can often be discovered and attached to
the appropriate nodes.

This linkage between user-specified family tree nodes and the official records
present us with a unique opportunity to assemble a parallel corpus of pairs of
names, hand-labeled by the users themselves. In the past researchers working
on name matching problem were forced to assemble their training datasets by
employing text mining techniques. Very often a specific method was needed
for identifying names in a given text and then edit distance measure was used
to find a list of misspelling candidates. Additionally, in some studies, a small
number of dedicated human labelers provided additional level of confidence.
These methods would inevitably lead to bias. We believe that our user-labeled
dataset contains significantly less bias than previously used training datasets.

Due to the availability of the “labeled” dataset in the Ancestry.com we have a
more direct way of generating training data. From the begininning we realized
that we could not employ standard supervised machine learning methods for
finding alternative name spellings since that would require us to collect positive
and negative training sets. While it would have been possible to mine positive
sets from user-labeled data, defining the process generating realistic negative
examples is ambiguous at best. This would require us finding name pairs that
would not be alternative spellings of each other with a high degree of confidence.
Even through it may seem doable at first glance this a very tricky proposition.
First of all how would we choose each pair item? What is the distribution of
negative pairs? We only have user labels for positive pairs, but not having user
label for a name pair does not necessarily mean that the pair is negative. Not
having any other alternatives we would have to bias our negative set to some
kind of similarity measure like the Levenshtein method and this would force
us to arbitrary select a threshold that would distinguish negative pairs from
positive pairs. However, besides introducing bias this method would make us
miss numerous negative pairs which would have high similarity values but would
not constitute a positive common misspellings. Due to having this obstacle
in front of us, we turned toward machine translation methods because only a
parallel corpus was needed to train the translation model.

Given the way Ancestry.com users interact with the genealogy service, we
isolated two separate ways of collecting parallel corpus data that would later
be used for training translation models and for testing. We felt that having
two completely different underlying processes for generating our datasets would
strengthen our case if we arrived at similar conclussions.

The first process of assembling a parallel corpus consists of collecting all
directed pairs of names drawn from anonymized (striped from all user identifying
information except last names) user tree nodes and their attached anonymized
records. We chose pair direction as following: last names on the left come
from tree nodes and last names on the right come from the records. Since last
names in records and tree nodes have different distribution taking directionality
into account is important when choosing the training set of pairs. A number



of filtering steps have been applied in order to de-noise the datasets and will
be discussed in more detail in the later sections. The pairs are directed which
implies that a pair “Johansson” - “Johanson” would be different from the reverse
pair “Johanson”-“Johansson”. This would manifest in separate co-occurrence
count for each pair.

The second process for building a parallel corpus involves using recorded
user search queries. Since the Ancestry.com search query form asks the user
for specific fields when searching for trees or records, we have been able to
extract user queries containing names from a search log. By grouping users
by their loginname, sorting the queries in chronological order, and fixing the
time interval at a generous 30 minutes, we have been able to extract directed
pairs of names that users use in their search queries. Our build-in assumption
is that frequently users do not find what they are looking for on their first
attempt and if that is the case they try again. The resulting data set is also
noisy and requires extensive filtering before being used as a training set. Each
pair has a direction from an older name spelling to a newer reformulation. For
example if a user A searches for name “Shephard” at time to and then searches
for name “Shepperd” at time t; where t; — ty < 30 then the resulting pair will
be: “Shephard” - “Shepperd” and not the other way around.

Table 1.1 provides an illustration of a sample of “records” dataset grouped by
Levenshtein edit distance and sorted by co-occurrence count. The distribution
of values of edit distances between names in each pair and types of individual
edit operations needed to transform left-hand member of a pair into a right-hand
member are shown on Tables 1.2 and 1.3 for each dataset. We also demonstrate
the breakdown of unique last names by their country of origin on Tables 4 and
5 for both datasets. Country of origin information was gathered from person
tree nodes. Each person’s node contains person’s place of birth in addition to
first and last names. The most common country of birth was selected as a
name’s country of origin. Only the “Old World” countries were chosen in order
to avoid mixing names from different regions which are present in the “New
World” countries.



Levenshtein edit distance | name#1 name#2 cooccurrence | count#1 | count#2 | Jaro-Winkler | Jaro | Jaccard
1 clark clarke 139024 1168804 | 335902 0.922 0.889 | 0.102
bailey baily 89910 725361 123012 0.922 0.889 | 0.119
parrish parish 77529 179308 138774 0.933 0.905 | 0.322
2 seymour seymore 15583 90071 24127 0.907 0.810 | 0.158
schumacher schumaker 6013 52769 12867 0.884 0.793 | 0.101
bohannon bohanan 5902 44770 16252 0.854 0.738 | 0.107
3 arsenault arseneau 1489 11455 4305 0.838 0.769 | 0.104
blackshear blackshire 1269 9556 3049 0.884 0.793 | 0.112
grimwade greenwade 781 1886 2480 0.764 0.611 | 0.218
4 sumarlidasson | somerledsson | 671 674 1526 0.752 0.628 | 0.439
riedmueller reidmiller 143 438 556 0.736 0.664 | 0.168
braunberger bramberg 131 624 277 0.802 0.674 | 0.170

Table 1.1: Name pairs and statistics




1.4 Methods

The problem of finding best alternative name spellings given a source name
can be posed as maximization of conditional probability P(tname|Sname) Where
tname 1S & target name and S,qme 1S a source name. Following the traditions
of statistical machine translation methods [6] this probability can be expressed
using Bayes’ rule as

P(Sname|tname) * P(tname)
P(Sname)

where P(tpame) is @ "name model” (corresponds to language model in machine
translation literature) and describes frequencies of particular name/language
constructs. P(Spame) is a probability of a source name. P(Spame|tname) corre-
sponds to alignment model.

”Name model” can be estimated using character n-grams language model
representation by finding the probabilities using the chain rule [27]):

P(tname | Sname) -

m

P(Clc2-~-cm) = HP(Ci|Cma:r(1,i7(nfl))a ) cmam(l,ifl))

i=1

where ¢; is an i*" character in the sequence of characters that comprise a name
of length m. n-gram model computes a probability of a character sequence
where each subsequent character depends on n — 1 previous characters in the
sequence.

An “alignment model” is used in generating translational correspondences
between names in our context and it can be best described by an example shown
on Figure 1.1. Here the name “Thorogood” is aligned with the name “Thor-
oughgood”. Looking at the Figure 1.1 we can clearly see that second occurrence
of letter 'o’ in “Thorogood” alignes with two letters ("o’ and ’u’) in “Thorough-
good”, similar situation happens with the last letter ’g’ in “Thorogood” which
gets aligned with 2 letters ’g’ in “Thoroughgood”. Other letters in “Thorogood”
aligned 1-to-1 with letters in “Thoroughgood”. Letter 'h’ in “Thoroughgood”
does not align with anything in “Thorogood”. Estimating “alignment model”
results in generation alignement rules such as the ones that we just presented.

We are not only interested in the best alternative spelling given by
arg max P(tname|Sname), but also in the ranked list of best suggestions, that can

name

be computed from the same distribution by sorting probabilities in decreasing
order:

K K
arg maXP(tname|3name) = arg maxp(tname) * P(Sname‘tname)

tname tname

K .
where arg max represents operator that finds top K t,ames that maxi-

name

mize P(tname|Sname). Finding P(tname|Sname) accurately without using the
equation above would be challenging. However, using Baye’s rule and break-
ing down P(tnamel|Sname) into language model P(¢,4me) and alignment model



P(Sname|tname) allows us to get a theoretically good translation even if under-
lying probabilities are not that accurate [6]. P(Sname) is fixed and does not
depend on the optimization variable t,ame and hence, will not influence the
outcome and can be discarded.

To find probability values corresponding “name model” and “alignment
model” we will be using tools developed by machine translation community,
replacing sentences with names and words with characters.

For training of our language and alignment models we have chosen the Moses
software package which is a widely known open-source statistical machine trans-
lation software package [17]. Moses is a package that contains various tools
needed in translation process. Typically, translation software deals with words
in a sentence as primary tokens, since we compare individual last names we had
to transform our input to a format recognizable by Moses while also maintaining
characters as primary tokens. In our case single words become sentences and
characters become words in the sentence.

When using the Moses software package we chose to use Moses’ Baseline
System training pipeline. It includes several stages:

1. Preparing the dataset: tokenization, truecasing and cleaning. Tokeniza-
tion involves including spaces between every character. Truecasing and
cleaning deals with lowercasing each string and removing all non-alphabetic
characters among other things.

2. Language model training. A language model is a set of statistics gen-
erated for an n-gram representation built with the target language. We
used IRSTLM [13], a statistical language model tool for this purpose. As
a result we generated 2-gram through 6-gram language models (6 was
the maximum possible). This step adds ”sentence” boundary (”word”
boundary here) symbols and, also as in the Baseline System, uses im-
proved Kneser-Ney smoothing. We follow a common practice in machine
translation where all examples of the target language, and not only forms
present in parallel corpus translation pairs, are used to construct a lan-
guage model. It is, therefore, based on a larger data set, and can lead to
an improved translation quality. In our experiments with search logs and
tree attachment datasets we used their respective lists of 250,000 most
frequent surname forms for language model estimation.

3. Alignment model building: Moses uses the GIZA++ package for statis-
tical character-alignment [22] character (Word)-alignment tools typically
implement one of Brown’s IBM generative models [7] that are being used
for determining translation rules for source language to the target lan-
guage (including fertility rules: maximum number of target characters
generated from one source character and so on) We created alignment
model, for each of the 2-gram through 6-gram language models created
in the previous step. As in the Baseline System, the ”-alignment” option
was set to ”grow-diag-final-and” and the ”-reordering” option was set to
”msd-bidirectional-fe”



Edit Distance | “Search” # of pairs | “Records” # of pairs
1 10894 21819
2 1312 2560
3 155 258
4 32 70
5 15 58
6 20 66
7 30 68
8-11 42 99
Table 1.2: Edit distance distribution
Operations | “Search” ops type % | “Records” ops type %
deletes 32.18 % 38.18 %
inserts 33.91 % 20.65 %
replaces 33.91 % 41.47 %

10

Table 1.3: Distribution of operations among name pairs separated by edit dis-

tance 1

4. Testing. We tested decoding on test folds in a batch mode with an option
”-n-best-list” to give top 1000 distinct translations. This value was chosen
large to well represent the high recall area on respective precision-recall
curves. It is possible that using different Moses configuration could give
even more accurate results.

We basically followed the Baseline System with the exception of tuning the
phase and replacing our source and target languages with sequences of characters
and instead of sequences of words. The tuning phase consists of steps optimizing
the default model weights used in the training phase. We have omitted this
phase because based on our initial tests, it didn’t give immediate accuracy
improvements on our datasets and it is relatively slow.

1.5 Results

1.5.1 Data Preparation

Since we dealt with user-generated data we had to devise an algorithm for
treating the data and generating a high confidence training set. We outlined
the following procedure:

1. Initially, a ”universe” of names was defined. All names in tests and train-
ing sequences came from this "universe”. A set of names was selected by
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Figure 1.1: Machine translation: alignment; the source name “Thoroughgood”
and the target name “Thorogood”. Arrows and red circles represent phrase
alignment rules learned as a result of the training stage.

taking top 250,000 most frequent names from both datasets (“search” and
“records”).

2. For each pair selected using procedure outlined in Section 3 we made sure
that each name comes from our set of high-frequency names. This step
resulted in 12, 855, 829 pairs in the “search” dataset and 51,744,673 pairs
in the “records” dataset.

3. In order to de-noise the name pairs we selected the top 500k/250k pairs
by co-occurrence for the “records” and “search” datasets respectively.

4. The remaining pairs were passed through the Jaccard index filter J:
J(A,B) = (AN B)|/|(AU B)|

where A and B are sets of users. Users are identified by either their login
session (“search” dataset) or by userid (“records” dataset). This filter was
used to remove name pairs that would be likely to co-occur by chance due
to high frequency of each individual name involved in a pair. For instance,
“Smith”-“Williams” pair would be filtered out. After filtering we were left
with 25k "record” and 12.5k “search” name pairs.

5. In the final step we estimated the rate of ”obvious” false positives based on
manual checks and similarity measures cross checking. Looking at random
samples stratified by edit distance we manually evaluated these samples
to estimate the false positive percentage. We estimated that the rate of
obvious false positives is 1.5% in “search” dataset and 1.4% in “records”
dataset. We specifically avoided using string based similarity criteria when
defining parallel corpus to prevent introducing bias. In principle, extra
filters can be applied to training sets.

1.5.2 Experiments and results

Comparing phonetic methods with similarity measures and with machine trans-
lation methods is not straightforward. Phonetic methods only allow for binary
responses (match or mismatch) when applied to name pairs. Therefore, it is
impossible to rank positive matches without introducing additional ranking cri-
teria. Our machine translation (MT) method produces a score that we use in
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ranking. Similarity methods produce a similarity value that is also used in rank-
ing. To get a meaningful comparison of these methods with phonetic methods
we had to make use of statistics that we gathered while processing datasets. Ad-
ditionally, we devised a unified methodology that could be applied to all listed
method types.

In all our experiments we used 10-fold cross validation for evaluating how
the results of predictions generalize to previously unseen data.

We randomly divided each dataset (“search” and “records”) into ten folds.
We train on 9 folds, then test on the remaining 1. This process was repeated 10
times for each test fold. Training folds were used to train the MT models. The
same test folds were used to test all methods, including MT generated models,
phonetic methods and similarity measures.

Generating results involves building a consistent metric that can be plotted
and compared between different methods. We adapted a standard information
retrieval performance metric: precision and recall.

Precision = L
O = TP L FP
TP
ll= ——~——
Reca TP+ FN

where T'P are true positives, I'IN are false negatives and F' P are false negatives.
The methods with larger precision and recall are superior.

Fach test fold contains a source name and one or more target names as-
sociated with each source name. Each of our methods for each source name
would produce its own list of target names. Since the number of suggested
target names (or alternative spellings) can be large we needed to find a suit-
able method for ranking target names. For all target names for position/rank
7 in the range from 1 to IV corresponding recall; and precision; are calculated.
So, we had to agree on what precisely we mean by rank for phonetic methods,
similarity methods and machine translation methods.

We decided to view ranking as the product of

rank(s,t) = alignmentScore(s,t) * languageM odel Score(t)

For the machine translation method (generated using the Moses software li-
brary) we used model-applier output scores which already contain the product
of language model score and alignment score. For machine translation where
character is a word:

rank(s,t) = mosesScore(s,t)

For phonetic algorithms language M odelScore(t) is the frequency of a name in
the dataset (freq).

rank(s,t) = hasSameCode(s,t) * freq(t)

where hasSameCode(s,t) — {0,1} and freq(t) represents the frequency of
name ¢ in the dataset.
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For similarity measures we also used name frequency, but we had to ex-
perimentally find a suitable exponential constant 7 to avoid over-penalizing
low-frequency names.

rank(s,t) = sim(s,t) * freq(t)”

where sim(s,t) — [0,1] represents the floating point similarity values and ~ is
the exponential constant used to control the frequency values.

After saving precomputed sorted (according to ranking) lists of alternative
name spellings for each method (phonetic, similarity, MT methods) we com-
puted Precision and Recall values for each position from 1 to N separately for
each test fold.

After producing 10 precision-recall curves for each method we needed to find
a suitable way to visualize confidence in our results without actually drawing
10 curves per method.

Inspired by the work of [19] we designed our own methodology for robust
statistical comparisons of our precision-recall curves. Using our ten folds we
evaluated confidence bands for each method. Assuming test examples are drawn
from the same, fixed, multivariate normal distribution, the expectation is that
the model’s precision-recall curves will fall within the bands with probability
of at least 1 — § where § represents the significance level. We need to find the
standard deviation of the sample which is the degree to which individual points
within the sample differ from the sample mean.

The density contours of multivariate normal distribution of precision and
recall pairs are ellipses centered at the mean of the sample. The eigenvectors
of the covariance matrix 3 are used as directions of the principal axes of the
Gaussian ellipses [15]. For our collection of 2D precision/recall pairs X =
(X17 XQ)

Bij = E[(Xi — pi)(X; — p5)]

The average values of ten points p1 and ps have given us centroid curve for
each method and the center of density contours.

The standard deviation for each vector direction is found by taking the
Cholesky decomposition of the covariance matrix and using the resulting ma-
trix for generating elliptical contours of a two dimensional normal distribution.
To capture the 95% confidence level in 2D we need to multiply each o by the
multiplier. We get the squared o-multiplier value from the Chi Square Distri-
bution (x?) table for 2 degrees of freedom where the Chi Square Distribution is
the distribution of the sum of squared independent standard normal variables.
o multiplier equals to 2.447 in this case. See Figure 1.5 for a visualization and
further explanation of confidence bands.

The resulting bands are formed by connecting by line segment endpoints
of the longest principle axis of each ellipse with its corresponding neighbor
ellipses. The resulting bands give us a visual cue regarding the variance of
precision/recall (PR) curves produced for different data test folds. Also, the
resulting bands have at least 95% confidence level because data points that may
not be captured be ellipses may still end up inside the bands between ellipses
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and since the ellipses are already at 95% confidence level this implies that the
bands will have a higher confidence level.

We ran 70 experiments on phonetic methods. Seven commonly used phonetic
methods were selected for testing and these methods were applied on the same
ten test folds. 90 experiments were conducted with distance metrics methods
(Jaro, Levenshtein, Winkler-Jaro). We experimented with three values when
choosing suitable v parameter for distance measurement methods ranking. Our
results indicate general consistency when using test data from both datasets
(“search” and “records”). NYSIIS phonetic method, first introduced by Taft
in 1970 [28] significantly outperforms other phonetic methods. Phonex method
appears to be the weakest performer of the phonetic methods we have looked at.
Other phonetic methods lie in the middle and their confidence bands overlap.
Because of the overlapping regions we cannot definitively rank the performance
of these methods.

Figure 1.6 shows how we selected the best of MT methods. Even though
that for all of our data test folds MT n-gram methods produced overlapping
confidence bands we can still see that the centroid curve for 5-gram MT methods
slightly outperforms other n-gram methods. Therefore, we have selected it to
represent MT methods when comparing with phonetic and similarity methods.

Our main results are shown on Figures 1.2 and 1.3. Here we present the
comparison of all alternative name generating methods on precision-recall plots.
It is clear that for both datasets MT methods perform better than all other
methods and that similarity methods generally outperform phonetic methods.

1.5.3 Implementation details

We imported our records/tree datasets into CDH4 Cloudera Hadoop and we
perform all our filtering using Hive/Python scripts and Java native implemen-
tations. The Febrl library [9] implemented by Christen was used for calculating
phonetic codes and string similarity values.

Country number of unique names Country number of unique names
England 9341 England 6690
Germany 5679 Germany 1323
France 1233 Ireland 900
Ireland 981 France 631
Scotland 647 Scotland 468
Russia 448 Russia 241
Italy 426 Italy 157
Switzerland | 377 Sweden 109
Norway 376 Poland 90
Netherlands | 300 Switzerland | 83
Others 3779 Others 727

Table 1.4: “Records” dataset Table 1.5: “Search” dataset
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1.6 Discussion and Conclusion

In this paper we presented a novel way of approaching alternative name spelling
generation problem. We utilized a well-known methodology for comparing al-
ternative name spelling methods and presented our results as precision-recall
plots which clearly indicate not only that machine translation methods appear
to be superior for our datasets to other methods but also show the rankings of
other well known methods. We demonstrated our results using a unique dataset
from Ancestry.com generated by millions of motivated users who are “experts”
at labeling the dataset.

The main conclusion of this work is that machine translation methods that
we have employed for finding ranked list of alternative last name spellings far-
outperformed all other methods we tried. Our results, also, indicated that the
NYSIIS phonetic method significantly outperformed other phonetic algorithms
and the Phonex phonetic method did not perform as well on our data. Ad-
ditionally, Jaro-Winkler similarity method together with the Levenshtein edit
distance method performed better than the Jaro method, which was in line with
our expectations. On the other hand, we were surprised by how well the NYSIIS
method performed compared to other phonetic methods. Our finding regarding
phonetic methods performance went against findings reported by Christen in
his 2006 paper [8]. However, he was relying on very different dataset and that
may explain the differences in our results.

In future work we plan on training our models specifically on training sets
composed of name pairs from the same country we plan on testing them against.
We also plan on doing more experiments with full names including first names
and initials. Additionally, we plan on trying MT methods on geographical
locations such as town/village names.
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Figure 1.2: “Search” dataset. MT moses-5-gram method outperforms all other
methods and similarity methods generally outperform phonetic methods. The
Jaro-Winkler and the Levenshtein confidence intervals overlap slightly with top
position of moses-5-gram confidence interval. Similarity measures such as Lev-
enshtein, Jaro and Jaro-Winkler all perform better than phonetic methods but
are inferior when comparing them with Machine Translation methods. NYSIIS
appears to significantly outperform other phonetic algorithms.



17

records
~
N -
—6— dmetaphone
» - fuzzy_soundex
o | mod_soundex
© nysls
0~ phonex
o <& phonix
e ] ~F- soundex
-% - jaro
<@ winkler-jaro
p @ - lgvenshiein
8 =0~ moses 5-gram
?
o
2 o
9 -
o
o
; .
e .
k=i

0.0 02 04 06 08 10

recall

Figure 1.3: “Records” dataset. MT moses-5-gram method clearly outperforms
all other methods. The general order of methods looks similar to the order
resulted from running on “search” dataset. Similarity measures such as Lev-
enshtein, Jaro and Jaro-Winkler all perform better than phonetic methods but
are inferior when comparing them with Machine Translation methods. NYSIIS
appears to significantly outperform other phonetic algorithms.
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Figure 1.5: Confidence bands for Moses produced 5-gram MT method. Green
lines show 10 folds and small red circles indicate ranking position for a given
curve on the precision/recall chart. For each position there are as many points as
there are folds and the coordinates for these positions, according to our assump-
tion, are normally distributed for both precision and recall. After computing
elliptical density contours, shown in light blue, we connected the endpoints of
the longest principle axis of the neighboring ellipses to produce confidence bands
(indicated by dashed light blue lines).
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Figure 1.6: MT model experiments. In “search” dataset 5-gram/6-gram meth-
ods appear to perform slightly better than other MT models. On the other
hand, in “Records” dataset almost all methods confidence bands overlap and it
is hard to make a definitive statement as to which method is the best. Since
performance of all MT methods are virtually indistinguishable from each other
we also select b-gram as a representative MT method when comparing with
phonetic and similarity methods.
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